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Tutorial 4

Solving matrix games

Two useful principles: 1. Deleting the dominated rows and columns to

obtain a new matrix with lower dimensions. Recall that a row is dominated

if it is dominated (or say bounded) from above by another row, a column

is dominated if it is dominated from below by another column.

2. The principle of indifference. Assume p = (p1, · · · , pm) and q =

(q1, · · · , qn) are optimal strategies for Player I and Player II respectively.

Then

(i) for any k ∈ {1, · · · ,m} with pk > 0, we have
∑n

j=1 ak,jqj = v(A).

(ii) for any l ∈ {1, · · · , n} with ql > 0, we have
∑m

i=1 ai,lpi = v(A).

Exercise 1. In a Rock-Paper-Scissors game, the loser pays the winner an

amount of money which is equal to the total number of fingers shown by the

two players (for example, if Player I shows Scissors and Player II shows

Paper, then Player II should pay 7 dollars to Player I).

(i) Find the value of the games.

(ii) Find optimal strategies for the two players.

Solution. The game is clearly a two-person zero-sum game and the game

matrix is given by

A =


R P S

R 0 −5 2

P 5 0 −7

S −2 7 0

.
(i) Since AT = −A, we have v(A) = 0.

(ii) Assume q = (q1, q2, q3) is an optimal strategy for Player I. Assume
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q1, q2, q3 are all positive, then by the principle of indifference, we have

( p1 p2 p3 )


0 −5 2

5 0 −7

−2 7 0

 = ( 0 0 0 ).

Hence we have 

5p2 − 2p3 = 0

−5p1 + 7p3 = 0

2p1 − 7p2 = 0

p1 + p2 + p3 = 1

Solving the above equations, we get p1 = 1
2
, p2 = 1

7
, p3 = 5

14
. Similarly,

assume p = (p1, p2, p3) is an optimal strategy for Player II and p is strictly

positive, we have q = (1
2
, 1
7
, 5
14

). It is easy to check v = 0, p = q = (1
2
, 1
7
, 5
14

)

satisfy the the conclusion of the Minimax Theorem. Hence v = 0 is the

value of A and p = q = (1
2
, 1
7
, 5
14

) are optimal strategies.

Exercise 2. Let

A =


0 −2 2 1 4

2 −1 3 0 5

3 4 −2 5 −3


(i) Find the reduced matrix of A by deleting dominated rows and columns.

(ii) Solve the two-person zero-sum game with game matrix A.

Solution. (i) Note that the fourth column is dominated by the second

column from below, by deleting the fourth column we obtain
0 −2 2 4

2 −1 3 5

3 4 −2 −3

 .
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Now the first row in dominated by the second row from above, by deleting

the first row we obtain  2 −1 3 5

3 4 −2 −3

 .

There are no more dominated rows or columns, hence the above matrix is

the desired reduced matrix.

(ii) Let A′ denote the reduced matrix. For x ∈ [0, 1], we have

(x, 1− x)A′ = (2x+ 3(1− x),−x+ 4(1− x), 3x− 2(1− x), 5x− 3(1− x)).

Draw the graph of



C1 : v = 2x+ 3(1− x) = 3− x

C2 : v = −x+ 4(1− x) = 4− 5x

C3 : v = 3x− 2(1− x) = 5x− 2

C5 : v = 5x− 3(1− x) = 8x− 3

.

The lower envelope is shown in Figure 1. SolvingC2 : v = 4− 5x

C3 : v = 5x− 2

,

we have v = 1 and x = 0.6. Hence v(A) = 1 and the optimal strategy for

the row player is (0, 0.6, 0.4). Solving

R2 : −y + 3(1− y) = 1

R3 : 4y − 2(1− y) = 1

,
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Figure 1:

we have y = 0.5. Hence the optimal strategy for the column player is

(0, 0.5, 0.5, 0, 0).

Recall the Minimax Theorem. This existence theorem also gives a charac-

terization of the value of a game matrix and optimal strategies for the two

players. More precisely, given an m × n matrix A, we call a number v the

value of A, a probability vector p ∈ Pm a maximin strategy for the row

player, and a probability vector q ∈ Pn a minimax strategy for the column

player if

(i) pAyT ≥ v for any y ∈ Pn.

(ii) xAqT ≤ v for any x ∈ Pm.

(iii) pAqT = v.

We note condition (i) is equivalent to

(i)′ every element of the row vector pA is at least v,
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and the condition (ii) is equivalent to

(ii)′ every element of the column vector AqT is at most v.

Exercise 3. Let A be an m×m matrix and B be an n× n matrix. Let M

be the (m+ n)× (m+ n) matrix given by

M =

 A O

O B

 .

Let u be the value, p ∈ Pm be a maximin strategy for the row player and

q ∈ Pm be a minimax strategy for the column player of A. Let v be the

value, r ∈ Pn be a maximin strategy for the row player and s ∈ Pn be a

minimax strategy for the column player of B.

(i) Suppose u > 0 and v < 0. Find the value of M and optimal strategies

for the two players of the game with game matrix M .

(ii) Suppose u > 0 and v > 0. Find the value of M in terms of u and v.

Find optimal strategies for the row player and the column player of M in

terms of u, v,p, q, r, s.

Solution. (i) Note that

( p 0 )

 A O

O B

 = ( pA 0 ),

and  A O

O B

 0

sT

 =

 0

BsT

 .

Since u > 0 and p is an maximin strategy for the row player of A, we have

every element of the m + n dimensional row vector (pA,0) is at least 0.

Similarly, since v < 0, we have every element of the m + n dimensional
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column (0, sBT )T is at most 0. Clearly,

( p 0 )

 A O

O B

 0

sT

 = 0.

Hence by the Minimax Theorem, the value of M equals 0, (p,0) is a max-

imin strategy for the row of player of M and (0, s) is a minimax strategy

for the column player of M .

(ii). In the case that u, v > 0, we start by assuming that for some λ ∈ [0, 1]

(to be determined), (λp, (1−λ)r) and (λq, (1−λ)s) are optimal strategies

for the row player and the column player of M respectively.

Consider

( λp (1− λ)r )

 A O

O B

 = ( λpA (1− λ)rB ).

By the definition of p and r, we have each of the first m coordinates of

(λpA, (1 − λ)rB) is at least λu, and each of the last n coordinates of

(λpA, (1−λ)rB) is at least (1−λ)v. Since u, v > 0, by letting λu = (1−λ)v,

we have λ = v
u+v

and λu = uv
u+v

. Then we have each element of the vector

 A O

O B

 v
u+v

qT

u
u+v

sT

 =

 v
u+v

AqT

u
u+v

BsT


is at most uv

u+v
. More over,

( v
u+v

p u
u+v

r )

 A O

O B

 v
u+v

qT

u
u+v

sT

 =
uv

u+ v
.

Hence by the Minimax Theorem, we have the value ofM is uv
u+v

, ( v
u+v

p, u
u+v

r)

is an optimal strategy for the row player and ( v
u+v

q, u
u+v

s) is an optimal
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strategy for the column player.


